

Faraz Faruqi

□ (+1) 857-389-3870 | □ ffaruqi@mit.edu | □ www.farazfaruqi.com | □ FarazFaruqi | □ faraz-faruqi | □ Faraz Faruqi

Summary

PhD researcher at MIT CSAIL working at the intersection of generative 3D models, physical simulation, and XR interaction. I build systems that integrate 3D diffusion pipelines, latent-space manipulation, simulation (mechanical, thermal, tactile), and multimodal interfaces to enable intuitive creation and refinement of 3D content in XR. A core goal of my work is to develop interfaces that recreate not just visual appearance but also physical properties of objects, enabling more realistic, fabrication-ready, and expressive prototyping in XR. I have created systems such as InstructMesh, MechStyle, TactStyle, and Compos3D, supporting geometry editing, physical viability, tactile synthesis, and part-based composition. I have multiple first-author publications at CHI, UIST, and SCF, and active collaborations with Google Research XR and Autodesk Research on advanced 3D generative workflows.

Education

Massachusetts Institute of Technology

Ph.D. in COMPUTER SCIENCE (CONCENTRATION: HUMAN-COMPUTER INTERACTION AND AI)

Cambridge, MA

2022 - 2026 (Expected)

Massachusetts Institute of Technology

M.S. in ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (CONCENTRATION: ARTIFICIAL INTELLIGENCE)

Cambridge, MA

2020 - 2022

Manipal Institute of Technology

B.TECH. in COMPUTER SCIENCE AND ENGINEERING (CONCENTRATION: ARTIFICIAL INTELLIGENCE)

Karnataka, India

2015 - 2019

Research Experience

Google Research (AI, XR, HCI, and UI/UX Teams)

Mountain View, CA (Remote)

RESEARCH COLLABORATOR

2022 - Present

- **Generative AI and XR Systems for 3D Content Creation:** Collaborated with multiple Google Research teams on end-to-end 3D generative AI pipelines.
- Developed systems like **Style2Fab**, **TactStyle**, **MechStyle**, and **InstructMesh**, integrating 3D diffusion, multimodal manipulation, and physical-property modeling.
- Designed workflows for region-based editing, latent-space manipulation, tactile texture generation, and fabrication-aware refinement.
- **3D Generative AI for XR Prototyping:** Built multimodal XR interfaces that reconstruct both visual and physical object properties.
- Working on physical-viability checks, tactile-feedback modeling, and simulation-guided generation with Google XR and AI team.

Autodesk Research (AI Lab & Visualization/HCI Group)

Toronto, Canada (Remote/Hybrid)

RESEARCH INTERN

Summer 2025

- **AI-Augmented 3D Modeling and B-Rep Workflows:** Developed structured generative pipelines for part-based and feature-based modeling.
- Implemented **latent-tree geometry editing**, semantic part assembly, and preference-guided composition.
- Contributed to Autodesk patent and CHI 2026 submission on part-based generative modeling interface.

Massachusetts Institute of Technology, CSAIL

Cambridge, MA

PHD RESEARCHER (ADVISOR: PROF. STEFANIE MUELLER)

2022 - Present

- **InstructMesh:** Lead researcher on LLM-based text-guided, region-based refinement of 3D generative models through latent-space editing.
- Integrated SDF-based transformations, latent voxel editing, and fabrication-aware multimodal workflows.
- **MechStyle, TactStyle, Vis2Touch, Compos3D:** Developed tools combining generative AI with mechanical, thermal, and tactile simulation.
- Created part-based pipelines, tactile heightfields, and XR interfaces for fabrication-ready prototyping.
- Published multiple first-author papers at CHI, UIST, and SCF; led collaborations with Google Research and Autodesk Research.

Selected Publications

InstructMesh: Selective Refinement of Generative 3D Models for Fabrication

ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI) (IN SUBMISSION)

2026

Faruqi F., Kataly A., Tas D., Hradilak T., Zhang N., Li J., Manhardt F., Nisser M.,

Phadnis V., Tombari F., Jampani V., Hofmann M., Mueller S.

Compos3D: Interactive Part-Based Composition for Creative Control in Generative 3D Models

ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI) (IN SUBMISSION)

2026

Faruqi F., Liu S., Fitzmaurice G., Matejka J.,

Vis2Touch: Perceptually Grounded 3D Printing of Depth and Texture from Images

with Generative AI

ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI) (IN SUBMISSION)

2026

Faruqi F., Sulaiman A., Yin J., Degraen D., Nisser M.

MechStyle: Augmenting Generative AI with Mechanical Simulation to Create Stylized and Structurally Viable 3D Models

ACM SYMPOSIUM ON COMPUTATIONAL FABRICATION (SCF 2025)

2025

Faruqi F., Abdel-Rahman A., Tejedor L., Nisser M., Li J., Phadnis V., Jampani V., Gershenfeld N., Hofmann M., Mueller S.

TactStyle: Generating Tactile Textures with Generative AI for Digital Fabrication

ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2025)

2025

Faruqi F., Perroni-Scharf M., Walia J., Zhu Y., Feng S., Degraen D. Mueller S.

InteRecon: Towards Reconstructing Interactivity of Personal Memorable Items in Mixed Reality

ACM CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2025)

2025

Li Z., Li J., Xiong Z., Zhang S., **Faruqi F.**, Mueller S., Liang C., Ma X., Fan M.,

Style2Fab: Functionality-Aware Manipulation for Fabricating Personalized 3D Models with Generative AI

ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST 2023)

2023

Faruqi F., Kataly A., Hasic A., Abdel-Rahman A., Rahman N., Tejedor L., Hofmann M. Mueller S.

Selective Self-Assembly using Re-Programmable Magnetic Pixels

2022

INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2022)

Nisser M., Makaram Y., **Faruqi F.**, Suzuki R., Mueller S.

Mixels: Fabricating Interfaces using Programmable Magnetic Pixels

2022

ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY (UIST 2022)

Nisser M., Makaram Y., Covarrubias L., Bah A., **Faruqi F.**, Suzuki R., Leake M., Mueller S.

Technical Skills Summary

Programming Python, C, C++, C#, JavaScript (Node.js, React), MATLAB

Machine Learning PyTorch, TensorFlow, JAX, NumPy, SciPy, scikit-learn, OpenCV, Diffusers

3D Geometry & Simulation Trimesh, PyMeshLab, MeshLab, Blender API, Kaolin, Open3D, CUDA, WARP, FEM-style simulation

Generative Models Diffusion Models, latent editing, 3D diffusion, NeRF/LRM, Gaussian Splatting

Graphics / XR Unity, Three.js, WebXR, WebGL, OpenGL fundamentals

Fabrication & CAD Fusion 360, Blender, Cura, PrusaSlicer, Formlabs PreForm

Developer Tools Git, Docker, Linux Dev, REST APIs, GCP

Databases SQL, MongoDB

Design / Prototyping Adobe Suite, Figma, Processing

Invited Talks

Art You Can Touch: 2.5D Tactile Models for Inclusive Engagement

October, 2025

(EXHIBITION) HENRY ART MUSEUM, SEATTLE

Featured in the Henry Art Museum's exhibition showcasing our 2.5D tactile modeling system (Vis2Touch/Text2Texture) for accessible, touch-based interpretation of visual artworks.

Shaping Realities: 3D Generative AI Tools for Physically Viable Design

June, 2025

(INVITED TALK) GOOGLE XR LABS

Invited by Google Research (XR) to present Style2Fab, TactStyle, and InstructMesh.

TactStyle for Tactile Interfaces in Robotics

June, 2025

(INVITED SPEAKER & DEMO) RSS 2025 WORKSHOP: NAVIGATING CONTACT DYNAMICS IN ROBOTICS

Invited presentation and live demo highlighting tactile texture generation and applications in robotics.